Pat O'Sullivan

Mh4714 Week6

Week 6

0.1 Continuity

A function f is continuous at $a \in \mathbb{R}$ if:

- (i) f is defined at a.
- (ii) $\lim_{x \to a} f(x)$ exists.

(iii)
$$\lim_{x \to a} f(x) = f(a).$$

Example 0.1

(i) $\frac{\sin(x)}{x}$ is not continous at x = 0 because it is not defined there. (ii)

$$f(x) = \begin{cases} \frac{1}{x} \text{ if } x \neq 0, \\ 1 \text{ if } x = 0. \end{cases}$$

is not continuous at x = 0 because $\lim_{x \to 0} \frac{1}{x}$ does not exist.

(iii)

$$f(x) = \begin{cases} \frac{\sin(x)}{x} & \text{if } x \neq 0, \\ 2 & \text{if } x = 0. \end{cases}$$

is not continuous at x = 0 because $\lim_{x \to 0} \frac{\sin(x)}{x} \neq f(0)$

From the properties of limits listed above we can conclude the following about continuous functions:

Let f and g be continuous at $a \in \mathbb{R}$:

- 1. f + g is continuous at a.
- 2. fg is continuous at a.
- 3. $\frac{f}{g}$ is continuous at a if $g(a) \neq 0$.
- 4. If the composition $f \circ g$ is defined over an open interval containing $a \in \mathbb{R}$ then $f \circ g$ is continuous at a if g is continuous at a and f is continuous at g(a).

Example 0.2

f(x) = x is continuous at every $a \in \mathbb{R}$ because

$$\lim_{x \to a} f(x) = \lim_{x \to a} x = a = f(a).$$

 $g(x) = k \ (k \in \mathbb{R})$ is continuous at every $a \in \mathbb{R}$ because

$$\lim_{x \to a} g(x) = \lim_{x \to a} k = k = g(a).$$

It follows that every polynomial is continuous over \mathbb{R} because a polynomial is made up of sums of products of constants and the function x.

Example 0.3

Since every polynomial is continuous everywhere it follows from poperty (iii) above that a quotient $\frac{P(x)}{Q(x)}$ of polynomials P(x), Q(x) is also continuous at every $x \in \mathbb{R}$ for which $Q(x) \neq 0$.

It can also be shown that the trigonometric functions $\cos(x), \sin(x)$ are continuous at every $x \in \mathbb{R}$.

0.1.0.1 Continuity over an interval.

Definition 0.4

If f is continuous at each element of the open interval (a, b) then f is said to be *continuous over* (a, b).

Definition 0.5

If f is continuous at each element of the open interval (a, b) and if $\lim_{x \to a^+} f(x) = f(a)$ and $\lim_{x \to b^-} f(x) = f(b)$ then f is said to be continuous over [a, b].

0.1.1 Intermediate Value Theorem

Theorem 0.6 (Intermediate Value Theorem)

Let f be a real valued function continuous over the interval [a, b] with $f(a) \neq f(b)$ and let k be any number between f(x) and f(b). There is $c \in [a, b]$ with f(c) = k.

This theorem basically says that a continuous function takes on all values intermediate to its end-point values.

It is an important fact that the proof of this theorem depends on the *Completeness Axiom*.

Example 0.7

The function $f(x) = x^2$, $x \in \mathbb{Q}$ does not have this intermediate value property. For instance, f(1) = 1, f(2) = 4, 1 < 2 < 4 but there is not c in the domain of f such that f(c) = 2. That is, f does not take on the value 2 even though 2 is between f(1) and f(2).