Pat O'Sullivan

Mh4714 Week 6

Week 6

0.1 Continuity

A function f is continuous at $a \in \mathbb{R}$ if:
(i) f is defined at a.
(ii) $\lim _{x \rightarrow a} f(x)$ exists.
(iii) $\lim _{x \rightarrow a} f(x)=f(a)$.

Example 0.1

(i) $\frac{\sin (x)}{x}$ is not continous at $x=0$ because it is not defined there.
(ii)

$$
f(x)=\left\{\begin{array}{l}
\frac{1}{x} \text { if } x \neq 0 \\
1 \text { if } x=0
\end{array}\right.
$$

is not continuous at $x=0$ because $\lim _{x \rightarrow 0} \frac{1}{x}$ does not exist.
(iii)

$$
f(x)=\left\{\begin{array}{l}
\frac{\sin (x)}{x} \text { if } x \neq 0 \\
2 \text { if } x=0
\end{array}\right.
$$

is not continuous at $x=0$ because $\lim _{x \rightarrow 0} \frac{\sin (x)}{x} \neq f(0)$

From the properties of limits listed above we can conclude the following about continuous functions:
Let f and g be continuous at $a \in \mathbb{R}$:

1. $f+g$ is continuous at a.
2. $f g$ is continuous at a.
3. $\frac{f}{g}$ is continuous at a if $g(a) \neq 0$.
4. If the composition $f \circ g$ is defined over an open interval containing $a \in \mathbb{R}$ then $f \circ g$ is continuous at a if g is continous at a and f is continous at $g(a)$.

Example 0.2

$f(x)=x$ is continuous at every $a \in \mathbb{R}$ because

$$
\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} x=a=f(a)
$$

$g(x)=k(k \in \mathbb{R})$ is continuous at every $a \in \mathbb{R}$ because

$$
\lim _{x \rightarrow a} g(x)=\lim _{x \rightarrow a} k=k=g(a) .
$$

It follows that every polynomial is continuous over \mathbb{R} because a polynomial is made up of sums of products of constants and the function x.

Example 0.3

Since every polynomial is continuous everywhere it follows from poperty (iii) above that a quotient $\frac{P(x)}{Q(x)}$ of polynomials $P(x), Q(x)$ is also continuous at every $x \in \mathbb{R}$ for which $Q(x) \neq 0$.

It can also be shown that the trigonometric functions $\cos (x), \sin (x)$ are continuous at every $x \in \mathbb{R}$.

0.1.0.1 Continuity over an interval.

Definition 0.4

If f is continuous at each element of the open interval (a, b) then f is said to be continuous over (a, b).

Definition 0.5

If f is continuous at each element of the open interval (a, b) and if $\lim _{x \rightarrow a^{+}} f(x)=$ $f(a)$ and $\lim _{x \rightarrow b^{-}} f(x)=f(b)$ then f is said to be continuous over $[a, b]$.

0.1.1 Intermediate Value Theorem

Theorem 0.6 (Intermediate Value Theorem)

Let f be a real valued function continuous over the interval $[a, b]$ with $f(a) \neq$ $f(b)$ and let k be any number between $f(x)$ and $f(b)$.There is $c \in[a, b]$ with $f(c)=k$.

This theorem basically says that a continuous function takes on all values intermediate to its end-point values.

It is an important fact that the proof of this theorem depends on the Completeness Axiom.

Example 0.7

The function $f(x)=x^{2}, x \in \mathbb{Q}$ does not have this intermediate value property. For instance, $f(1)=1, f(2)=4,1<2<4$ but there is not c in the domain of f such that $f(c)=2$. That is, f does not take on the value 2 even though 2 is between $f(1)$ and $f(2)$.

